- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Huerta, EA (1)
-
Pham, Kiet (1)
-
Tiki, Victoria (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Higher-order gravitational wave modes from quasi-circular, spinning, non-precessing binary black hole mergers encode key information about these systems' nonlinear dynamics. We model these waveforms using transformer architectures, targeting the evolution from late inspiral through ringdown. Our data is derived from the \texttt{NRHybSur3dq8} surrogate model, which includes spherical harmonic modes up to ℓ≤4 (excluding (4,0), (4,±1) and including (5,5) modes). These waveforms span mass ratios q≤8, spin components sz1,2∈[−0.8,0.8], and inclination angles θ∈[0,π]. The model processes input data over the time interval t∈[−5000M,−100M) and generates predictions for the plus and cross polarizations, (h+,h×), over the interval t∈[−100M,130M]. Utilizing 16 NVIDIA A100 GPUs on the Delta supercomputer, we trained the transformer model in 15 hours on over 14 million samples. The model's performance was evaluated on a test dataset of 840,000 samples, achieving mean and median overlap scores of 0.996 and 0.997, respectively, relative to the surrogate-based ground truth signals. We further benchmark the model on numerical relativity waveforms from the SXS catalog, finding that it generalizes well to out-of-distribution systems, capable of reproducing the dynamics of systems with mass ratios up to q=15 and spin magnitudes up to 0.998, with a median overlap of 0.969 across 521 NR waveforms and up to 0.998 in face-on/off configurations. These results demonstrate that transformer-based models can capture the nonlinear dynamics of binary black hole mergers with high accuracy, even outside the surrogate training domain, enabling fast sequence modeling of higher-order wave modes.more » « less
An official website of the United States government

Full Text Available